STRONG CONVERGENCE OF THE ITERATES OF AN OPERATOR[†]

BY

S. R. FOGUEL

ABSTRACT

Let $R = \int \phi(t) P_t dt$ where P_t is a semi group of operators. Conditions are established for the strong convergence of R^n .

Let X be a Banach space, X^* its dual, and P_t , $0 \le t$, a strongly continuous semi group of operators with $||P_t|| \le 1$ and $P_0 = I$. Let $0 < \phi(t)$ be a continuous function with $\int_0^\infty \phi(t)dt = 1$ and define $R = \int_0^\infty \phi(t)P_t dt$. (If $\phi(t) = \lambda e^{-\lambda t}$ for $\lambda > 0$ then $(1/\lambda)R$ is $(\lambda I - A)^{-1}$ where A is the infinitesimal generator.)

Let $0 \leq t_0$ and 0 < h and set

$$Q_{1} = \int_{t_{0}}^{t_{0}+h} \phi(t)P_{t}dt \cdot \left(\int_{t_{0}}^{t_{0}+h} \phi(t)dt\right)^{-1} \text{ and}$$
$$Q_{2} = \left(\int_{0}^{t_{0}} + \int_{t_{0}+h}^{\infty}\right)\phi(t)P_{t}dt \cdot \left(1 - \int_{t_{0}}^{t_{0}+h} \phi(t)dt\right)^{-1}.$$

Then $||Q_1|| \le 1 ||Q_2|| \le 1$, $Q_1Q_2 = Q_2Q_1$ and

$$R = \left(\int_{t_0}^{t_0+h} \phi(t)dt\right) Q_1 + \left(1 - \int_{t_0}^{t_0+h} \phi(t)dt\right) Q_2.$$

By [1, Lem. 2.1.]:

$$\left\| R^{n}(Q_{1}-Q_{2})x \right\| \to 0 \text{ for all } x \in X.$$

[†] The research reported in this paper was partially supported by N.R.C. of Canada. Received April 4, 1973

Thus $|| R^n y || \to 0$ provided y is in the space X_1 , generated by $(Q_1 - Q_2)x$ where x, t_0 , and h are arbitrary. Let us use the Hahn-Banach theorem which states: if $x_0^* \in X^*$ and $x_0^*(X_1) = 0$ then

$$0 = x_0^* (Q_1 - Q_2) x \xrightarrow[h \to 0]{} x_0^* (P_{t_0} x - Rx).$$

Thus $P_{t_0}^* x_0^* = R^* x_0^*$ for every $0 \le t_0$ or $P_{t_0}^* x_0^* = x_0^*$ for every $0 \le t_0$.

Thus we have proved Theorem 1.

THEOREM 1. Let P_t be a strongly continuous semi group of contractions and $P_0 = I$. If $\phi(t)$ is a positive continuous function on $[0, \infty)$ and $P_0 = I$, $R = \int_0^\infty \phi(t) P_t dt$ then $|| R^n x || \to 0$ for every $x \in X$ such that $x_0^*(x) = 0$ for all x_0^* with $P_t^* x_0^* \equiv x_0^*$.

REMARK. In [2] it was proved that $P_t^*x^* = x^*$ for all t if and only if $R^*x^* = x^*$ by a similar technique. Using more detailed analysis one can show that $\phi(t)$ does not have to be strictly positive or continuous. (If R is given by ϕ , R^n is given by convolutions of ϕ and these convolutions become smoother as n increases.)

If we assume that X is a reflexive space, a more precise result can be established. If $Rx_0 = x_0$ consider the convex compact set

$$\{x_0^*: ||x_0^*|| = 1, x_0^*(x_0) = 1\}$$

It is invariant under R^* and thus contains a fixed point. There exists a functional x_0^* with $||x_0^*|| = x_0^*(x_0) = 1$, $R^*x_0^* = x_0^*$.

By reflexivity, if $R^*x_0^* = x_0^*$, there exists a vector x_0 with $||x_0|| = x_0^*(x_0) = 1$ and $Rx_0 = x_0$. Define

 $K = \{x: Rx = x\}, L = \{x: x^*(x) = 0 \text{ for all } x^* \text{ with } R^*x^* = x^*\}.$

By [2, Lem. 2] and Theorem 1, if $y \in L$ then $|| R^n y || \to 0$. Hence if z = x + y for $x \in K$ and $y \in L$ then

$$\|z\| \ge \|R^n z\| \to \|x\|.$$

Or Ez = x is a bounded operator of norm 1. To see that K+L is the entire space, let $x^*(K+L) = 0$. Since $x^*(L) = 0$, then $R^*x^* = x^*$, by the Hahn-Banach theorem. Following from the remarks above, there exists a vector x with Rx = xand $x^*(x) = 1$ which contradicts $x^*(K) = 0$. Thus we have proved Theorem 2. **THEOREM 2.** Assume the conditions of Theorem 1 and let X be reflexive. Then \mathbb{R}^n converges strongly to a projection on the space $\{x: \mathbb{R}x = x\}$.

References

1. S. R. Foguel and B. Weiss, On convex power series of a conservative Markov operator, (to be published in the Proc. Amer. Math. Soc.).

2. M. Falkowitz, On finite invariant measures for Markov operators (to be published).

University of British Columbia Vancouver, Canada and The Hebrew University of Jerusalem Jerusalem, Israel