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ABSTRACT 

Let R = [ q~ (t)P, dt where Pt is a semi group of operators. Conditions are 
established for the strong convergence of R ~. 

Let X be a Banach space, X* its dual,  and Pt, 0 g t, a strongly cont inuous semi 

group of  opera tors  with II P, II ---- 1 and Po = I.  Let 0 < Oh(t) be a cont inuous 

function with S~r = 1 and define R = f~'r dt. ( I f  r  ,:.e -at 

for 2 > 0 then (1 [2)R is (2I  - A) - l  where A is the infinitesimal generator.)  

Let 0 < to and 0 < h and set 

Qt = J,o c~(t)P,dt" wto r and 

e~ = (fo'~ + f,o:~ )~(,)~,a,'(1 -J,o:'~ ~(,)a,)~-' 
Then II Q* II ~ ~ II Q~ II ~ 1, Q~Q~ = Q=Q, and 

R ~(,)a,)e,  + - q~(,)at)e~. 

By [1, Lem.  2.1.'1: 

II R"(Q~- Q=>ll-~o for all xeX.  
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Thus I] R"Y [I ~ 0 provided y is in the space X,,  generated by (Q1 -Q2)x where x, 

to, and h are arbitrary. Let us use the Hahn-Banach theorem which states: if 

x~ e X* and x~(X,)  = 0 then 

0 = x~(Qt - Q2)x ~ x*(Ptox -  Rx). 
h..* O 

Thus Ptoxo* * = R*x~ for every 0 _~ to or Ptoxo* * = x* for every 0 < to. 

Thus we have proved Theorem 1. 

THEOREM 1. Let Pt be a strongly continuous semi group of contractions and 

Po = 1. I f  qb(t) is a positive continuous function on [0, oo) and Po = 1, 

R = f~c~(t)Ptdt then ]]R"x]l ~ 0 for every x e X  such that x ~ ( x ) = O f o r  

all x* with . . h-.oo P, Xo - x~. 

REMARK. In [-2] it was proved that P'x*  = x* for all t if and only if R 'x* = x* 

by a similar technique. Using more detailed analysis one can show that ~(t) does 

not have to be strictly positive or continuous. (If R is given by ~, R" is given by 

convolutions of ~b and these convolutions become smoother as n increases.) 

If  we assume that X is a reflexive space, a more precise result can be established. 

If  Rxo = Xo consider the convex compact set 

{ : :  [1:[I =1, x: Xo)= 1}. 

It is invariant under R* and thus contains a fixed point. There exists a functional 

x~ with [[ x~ II = x*(Xo) = 1, R ' x *  = x:. 

By reflexivity, if R 'x* = x~, there exists a vector Xo with 11Xo ][ = x*(xo) = 1 

and Rxo = Xo. Define 

K = {x: Rx = x}, L =  {x: x*(x) = 0 for all x* with R ' x*  = x*}. 

By [2, Lem. 2] and Theorem 1, if y e L then 11R"y II "-* 0. Hence if z = x + y 

for x e K and y e L then 

II z II - 11 Rnz II-  II x Ii. 

Or E z = x  is a bounded operator of norm 1. To see that K + L  is the entire space, 

let x*(K + L ) =  0. Since x * ( L ) =  0, then R ' x * =  x*, by the Hahn-Banach 

theorem. Following from the remarks above, there exists a vector x with Rx = x 

and x*(x) = 1 which contradicts x*(K) = 0. Thus we have proved Theorem 2. 
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THEOREM 2. Assume  the conditions o f  Theorem 1 and let X be reflexive. 

Then  R ~ converges s t rongly  to a projection on the space {x: R x  = x}.  
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